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Universality Class of a Fibonacci
Ising Model
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The specific heat of a certain ferromagnetic Fibonacci Ising model is shown to
have a logarithmic singularity.
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1. INTRODUCTION

Layered Ising models were first introduced by Fisher*) and then studied in
greater detail by several authors.?™) In particular, for a square lattice the
nth-order layered Ising model is defined by the energy of interaction

nM+1 N N
&= —E, Z z OikOikv1— Z Z Z E(1) Cnj+ 1k Fnj+ i+ 1k
j=1 k=-N+1 j=0 I=1k=—-N+1

(1.1)

In the thermodynamic limit M — oo and N — oo, Au-Yang and McCoy‘®
showed for any finite #» and any set {E,(/)} that when T — T, the specific
heat diverges as

c/k = —A(n; {E,})In |1 — T/T.| + O(1) (1.2)

An explicit expression for the amplitude A(n; {E,}) was derived by
Au-Yang and McCoy.® They found that this amplitude depends strongly
on the arrangement of the energies { £,(/)}, in that it can vary from order
1 to exponentially small in #. In the case when n — oo and the energies were
chosen to be independent random variables, the amplitude A(n; {E,}) was
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shown to vanish with probability one. This vanishing of the amplitude in
the random limit was interpreted by Au-Yang and McCoy as the absence
of a logarithmic singularity in the random Ising model, which was in
accord with the earlier studies of McCoy and Wu.(®”

Consider now a Fibonacci sequence of symbols defined by

S,.,=S,S, , for n=1,2,. (1.3)

with S;=8 and S;=4 and the product in (1.3) is juxtaposition; for
example, S,=AB, S;=ABA, S,= ABAAB, Ss=ABAABABA,..., and the
Fibonacci sequence is S, =lim,_, . S,. In the sequence S, there are F,
symbols, of which F,_; are A’s, where F, are the Fibonacci numbers
defined by

F, ,=F, ,+F, with Fo=F,=1 (1.4)

In this paper we consider the F,th-order layered Ising model, where E,(j)
is £, or Ep, depending upon whether the jth position corresponds to an A4
or B in the sequence S,. We prove that the amplitude A(F,; {E,}) con-
verges to a nonzero expression. Furthermore, the limiting expression is
quite simple when compared with the general formula for the amplitude
A(F,; {E;}). We conclude from this that the specific heat for the Fibonacci
Ising model defined by the energy of interaction on a square lattice of size
2N XM is

M N M1 N
&= —E, Z Z Oik+t ™ Z Z EL()) Gik0j+1,k (1.5)

j=1k=-N+1 j=1 k= —N+1

where E,(j) is either E, or Eg, depending whether j is an 4 or B in the
Fibonacci sequence S, has a logarithmic singularity in the specific heat
with amplitude given below [see Eq. (3.7)]. This part is nonrigorous, since
it assumes the interchange of T — T. with the limit n — oo in the F,th-order
layered Ising model.

In Section 2 some preliminary lemmas are proved. In Section 3 the
amplitude A(F,;.{E,}) is computed in the Fibonacci limit. The amplitude
simplifies when n — co because we are able to use Weyl’s theorem (see, for
example, Hua®) on the uniform distribution of the sequence {nt},
n=1,2,.., where 7 is irrational and {x} denotes the fractional part of x.

2. SOME LEMMAS

Lemma 2.1. Let {x,,|1<k<nkeN} be a sequence of real
numbers in the interval [0, 1] such that x, , — x, uniformly in k as n — .
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If the sequence {x, | ke N} is uniformly distributed on [0, 1}, then for any
continuous function f defined on [0, 1] we have

1 & 1

*Zf(xk,n)—’J S(x)dx as n— oo

neZy 0

Proof. Define
1 Z 1
I,=-7Y, f(xk)—f flx) dx
n.— 0
Then we have

< |+

1 1
o X S = | S dx

1 n
- Z [f(xk,n)_f(xk)]
P

SILI+ sup | f(x,) — f(x)l

1<k<n

Now let ¢>0 be given. Since {x, | ke N} is uniformly distributed, there
exists N, (¢) such that n> N,(¢) implies |/,| <e/2. The function f is
uniformly continuous on [0, 1T so there exists d(¢) such that for any
x,x"e [0, 1] satisfying |x—x'| <d(e), we have |f(x)— f(x')| <e&/2. But
Xy, — X, uniformly in k as n — oo, so there exists N,(¢) such that n > N,(¢)
implies |x, ,— x| <o{e) for all k; and hence, |f(x,,)— f(x )} <&/2 for all
k, thus

sup | f(xe ) — flxl <e/2

I<k<n

Choosing n = Max(N,(g), N,(¢)), the lemma is proved. J

Lemma 2.2. Let F, be the Fibonacci numbers defined by (1.4).
Then for all neN and all 1<k<F,—1,

[k EF—‘} = [ka]

where a =lim,, _, , (F,_,/F,) and [x] is the greatest integer function.

Proof. The f{raction F,_,/F, is the nth continued fraction
approximate to «. From the theory of continued fractions® we have the
basic expression

Fn—l (_l)nén
- = 0< o 1 2.1
F, VFF., 0SS 1)

o =
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From this it immediately follows that for # even

F,_,
o) > | ks

and that for n odd

[ka] < it

We now establish the inequalities in the reverse direction (the above
inequalities are true for 1 <k <F),).
For n even we have, using k< F,,

F, 0
ko < k==L 7
8 Fn +Fn+1

so that
F )

ko<l k2=t 2
[a] [ Fn +Fn+l:|

The term on the right-hand side of the above inequality will be
Lk(F,_,/F,)] if we can show that

Fnl} 6n
k + <1
{ F n+1

n

Let kF, =m'F,+m,0<m<F,, so that {k(F,_,/F,)}=m/F,.
Observe

m_ o, !y | <F,,——1+ i -1 1 Il <1
Fn Fn+1 Fn Fn+1\ Fn Fn+1— Fn Fn+1

For n odd we have

F,

n—1 n

<k
F Fn+1 3

so that

F F

n n+1

[kh— o }s[ka]

The term on the left-hand side of the above inequality will be [k(F, ,/F,)]
if we can show that {k(F,_ /F,)}—9d,/F,. >0.
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Observe

m 0, m 1 1 1
_— >_.___>__
Fn Fn+1 Fn Fn+1 Fn Fn+1

>0 |

Lemma 2.3. The sequence x,;={k(F,_,/F,)},1<k<F,—1,
converges uniformly in k£ as n—o to x,={ka}, where a=
lil’nn—‘»oo (anl/Fn)'

Proof. Using {x} =x-—[x], we have

F F
xk,Fn—xk=k< ;1—a>—|:k ;fl]+[k<x]

F
= ()

where the second equality follows from Lemma 2.2, From (2.1) we easily
see

n—1 < 1
o <=
Y
so we may conclude that
Xprp —Xp| €—
| k,Fy k| F

n

The right-hand side of this last inequality is independent of k and goes to
zero as n— 0. ||

Using the above lemmas, we can now prove the following result:

Proposition 2.4. Let x; . = {k(F,_,/F,)}, | <k<F,, and let f be
a continuous function defined on [0, 17; then

fim 2= 3 Sl = [ s as

Our final lemma follows:

Lemma 2.5. Let p and ¢ be positive, relatively prime integers,

p>q. Define
p
Spa={[ 2]

neN}

822/51/3-4-11
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where [ x] is the greatest integer function. Then the number of elements in
the set

S, 0L I+ 1, 1+m}, 1<i<p, 0sm<gp—1
is either [(m+ 1) g/p] or [(m+1)¢q/p]+ 1.

Proof. Write p=sq+r, 1<r<q—1, seN, and let a,=[k(p/q)].

Now
ak+1—ak=s+[(k+1>5]—[kf]
q q

sothata,,,—a,=sor s+ 1. Form+1<s,

CRRE

This shows that the lemma is true for m+1 <s. Now let a,,, @, 1, @, »
be elements of S, , that lie in {/,.., /+m} such that a,_, and a,, v, are
not in {/,.., /+m}. Then

m>a,,+N—a,,=[(”+N) <s+§1>]—[n <S+£>]
=Ns+[(N+n)ﬂ—[" ﬂ

>Ns+[Nf]=Ns+Nf—{Nf}
q q q

where we used [x + y]=[x]+ [y]. Thus,

N’—’<m+{N5}<m+1
q q

or

N<m+1)2
p

Since N is an integer, N < [(m + 1) ¢/p]. Therefore, the number of elements
inS,,n{l.,I+m}, N+1,is less than or equal to [(m+1)g/p]+ 1.
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Now N is maximal, which means a,,, y,—a,>m. Since a,, v, (—a,
is an integer, we must have a,,, v, —a,=m+ 1. Thus,

m+1<(N+1)s+[(N+n+1)5]—[an
q q

= (N+1)s+(N—I—1)g—{(N+n+1)§}+{n2}

Hence

r

(N+1) >m+1+{(N+n+1);}~{n—}

ESRlas

or

N+13(m+ 1)2+€<{(N+n+1)1}—{n1})
pp q q

The second term on the right-hand side is strictly larger than —1,
q q
(N+1)>(m+ 1)—-1>|:(m+1)—]—1
P p
Since N+ 1 is an integer,
q
N+1 >|:(m+1);]

This proves the lemma. §

3. AMPLITUDE A(F,. {E,}) IN THE FIBONACCI LIMIT

The critical temperature 7, for a nth-order layered Ising model
satisfies the condition*¥

(F72) =11 20 (1)

1+2z,,

For the Fibonacci layering S,,, (3.1) reduces to

-z, 2 2F,_ 128,
Trz. = 2477 'Z8"? (3.2)
le
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As n— o0, the relation (3.2) becomes

1_ . 2
(—) =223 (3.3)
where a = (1 + \/g)/2 is the golden mean. The amplitude A(F,; {E,}) is
given by®

{Ez} ﬁ (4nF,)” I(Zlc —2Zy)

><<2F,1151+Z"E2 Y z5-1(1) zzL()}> /B(F,,;{Ez}) (3.4)

=1

with

B*(F,; {E;})= Z 211

m=0 I=1 j=0

where z, = tanh(E,/kT), z,(j) = tanh{E,(j)/kT}. We write z, =

tanh(E ,/kT) and z 5 =tanh(Ez/kT), and the z’s have a subscript ¢ when T is
T.. We can now prove the following:

Sy m(”z“) 200+ ) (3.5)

Z1e

Proposition 3.1. For the Fibonacci layering S, we have

i B {Ea}) =< 1—x )2 (3.6)

n— oo FQ lenx2

n

where x =z4./2 4,.

Proof. Using the T, condition (3.2), we can write

. . z
(T2) ™ [T s st vz, 2
l_ZIC j=0 Z e

where N, = N ,(/, m, n) is the number of A’s in the Fibonacci layering S,
between positions [/ and /+m (including / and [+m), 1<I<KF,,
0<m<F,— 1. For odd n the positions of 4’s in the Fibonacci layering is
generated by {[k(F,/F,_,)]|keN} and this is essentially the case for
even # (the last two elements in any block are interchanged). In either case
we may apply Lemma 2.5 to conclude that N ,(/, m, n) is either [N ,] or
[N, ]+ 1, where we define N,=(m+ 1) F,_,/F,. Thus, we must compute
the sum

7NA,m,n

?AI
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Because of the periodicity we have

Fa
Z NA(l’man)z(m+I)Fn—l
[=1
or
1 &

- Z NA(lzman):NA
F”I:l

Using this last expression and the fact that N ,(/, m, n) assumes only the
values [N,] and [N,]+1, we may calculate the number of times
N (I, m, n) assumes the value [N ,] as / ranges from 1 to F,. A simple
calculation shows that this number is F,(1 — {N,}), where {x} is the frac-
tional part of x.

Thus, we have

1 Fr—1 _ _ -~ _ 5
Inzf_vz Z XZNA(Fn(l_{NA})xiz[NA]‘FFn{NA}X_Z[NA:Iiz)
=0

1 F—1 o _ _
=F > X201 = {N 3 +x72{N,})
nm=0
Applying Proposition 2.4, we obtain
1 1_x2 2
201 -2 —
I,,—»Lx (I1—t4+x"“t)dt (——x21nx2>
asn—oo. |

Using Proposition 3.1 and (3.4), we casily establish Theorem 3.2.

Theorem 3.2. For the Fibonnaci S, layered Ising model, the
amplitude A(F,; {E,}) approaches

Jips

4n

x?1n x2
1—x?

+ EBaz(ZEcl—ZBc)}Z (37)

(22! —21) {2E,\ + E u(z ) —24)

asn— oo, where x=zp./z,,a '=(1+ \/g)/Z, and z,,, z 4., and z, satisfy
the 7', condition (3.3).

Remarks

1. Numerically the convergence of A(F,;{E,}) to (3.7) is quite
rapid.
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2. For E,=Ez=E,, (3.3) reduces to the Onsager T, condition and
(3.7) reduces to the Onsager amplitude for the divergence of the
specific heat.

3. The amplitude (3.7) naturally factors into two pieces. The piece
coming from Proposition 3.1 does not depend upon the golden
mean o~ %, whereas the second piece clearly does.
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