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The specific heat of a certain ferromagnetic Fibonacci Ising model is shown to 
have a logarithmic singularity. 
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1. I N T R O D U C T I O N  

Layered Ising models were first introduced by Fisher ~1) and then studied in 
greater detail by several authorsJ 2-5) In particular, for a square lattice the 
nth-order layered Ising model is defined by the energy of interaction 

nM+ 1 N M 1 n N 

~ = - - E l  Z 2 ~J, kffj, k+l - ~ ~ ~ E2(lltTnj+l, kffnj+l+l,k 
j = l  k =  N + I  j = 0  / = 1  k--  N + I  

(1.1) 

In the thermodynamic limit M ~  oo and N ~  o0, Au-Yang and McCoy (3) 
showed for any finite n and any set {Ez(j) } that when T ~  Tc the specific 
heat diverges as 

c / k =  - a ( n ;  {E2} ) In 11 - T/TcI + O(1) (1.2) 

An explicit expression for the amplitude A(n; {E2}) was derived by 
Au-Yang and McCoy. (3) They found that this amplitude depends strongly 
on the arrangement of the energies {E2(j)}, in that it can vary from order 
1 to exponentially small in n. In the case when n ~ ~ and the energies were 
chosen to be independent random variables, the amplitude A(n; {E 2 }) was 
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shown to vanish with probability one. This vanishing of the amplitude in 
the random limit was interpreted by Au-Yang and McCoy as the absence 
of a logarithmic singularity in the random Ising model, which was in 
accord with the earlier studies of McCoy and Wu. ~6,v) 

Consider now a Fibonacci sequence of symbols defined by 

S , + I = S ,  Sn I for n = l ,  2 .... (1.3) 

with S o = B  and S I = A  and the product in (1.3) is juxtaposition; for 
example, $2 = AB, $3 = ABA, $4 = ABAAB, $5 = ABAABABA ..... and the 
Fibonacci sequence is S~ = limn_. ~ S,. In the sequence S, there are Fn 
symbols, of which F , _  1 are A's, where F,  are the Fibonacci numbers 
defined by 

F,,+I=F,,_~+F,, with Fo=F1  = 1 (1.4) 

In this paper we consider the F,  th-order layered Ising model, where E2(j) 
is EA or EB, depending upon whether the j th  position corresponds to an A 
or B in the sequence S,. We prove that the amplitude A(F,,; {Ez}) con- 
verges to a nonzero expression. Furthermore, the limiting expression is 
quite simple when compared with the general formula for the amplitude 
A(F,; { E2 }). We conclude from this that the specific heat for the Fibonacci 
Ising model defined by the energy of interaction on a square lattice of size 
2N • M is 

M N M 1 N 

e = - E l  ~ ~ (~j,k+l-- ~ 2 E2(j) ffJ.k~Tj+l, k (1.5) 
j = l  k : - - N + I  j - - i  k - -  N + I  

where Ez(j) is either EA or EB, depending whether j is an A or B in the 
Fibonacci sequence S o ,  has a logarithmic singularity in the specific heat 
with amplitude given below [-see Eq. (3.7)]. This part is nonrigorous, since 
it assumes the interchange of T ~ T c with the limit n ~ ~ in the Fnth-order 
layered Ising model. 

In Section 2 some preliminary lemmas are proved. In Section 3 the 
amplitude A(F~;,{E2}) is computed in the Fibonacci limit. The amplitude 
simplifies when n ~ ~ because we are able to use Weyl's theorem (see, for 
example, Hua ~8)) on the uniform distribution of the sequence {nv}, 
n = 1, 2 ..... where r is irrational and {x} denotes the fractional part of x. 

2. S O M E  L E M M A S  

L e m m a  2.1 .  Let {x~,nl l ~ < k ~ < n , k ~ r ~ }  be a sequence of real 
numbers in the interval [0, 1 ] such that Xk,,, --* Xk uniformly in k as n --* oo. 
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If the sequence {Xk t k e ~ } is uniformly distributed on [0, 1 ], then for any 
continuous function f defined on [0, 1 ] we have 

1 f(xk,.) --+ f ( x )  dx 
F / k =  1 

a s  n ---* c ~  

Proof. Define 

I. = -  f ( x k ) -  f ( x )  dx 
Ftk= 1 

Then we have 

~ dx 1 
k = l  1 

~< II.I + sup If (x~, . ) - f (x~)[  
l<~k<~n 

Now let e > 0 be given. Since {xk I k e N } is uniformly distributed, there 
exists N~(e) such that n>~N~(e) implies JI.I <e/2. The function f is 
uniformly continuous on [0, 1] so there exists 6(e) such that for any 
x ,x 'e[O,  1] satisfying Ix-x' l<(5(e),  we have I f ( x ) - f ( x ' ) l < e / 2 .  But 
x~,. -+ xk uniformly in k as n -+ 0% so there exists N2(~; ) such that n >~ N2(e) 
implies Ixx,,,- xkl < 6(~) for all k; and hence, I f (xk . . ) - f (xk) i  < ~/2 for all 
k, thus 

sup If(x~,.)-- f(xk)l < ~/2 
l~k<~n  

Choosing n >/Max(Nl(s), N2(g)), the lemma is proved. | 

k e m m a  2.2. Let Fn be the Fibonacci numbers defined by (1.4). 
Then for all n e N and all 1 ~< k ~< F. - 1, 

where ~ = lim~ ~ oo (F~_ ~/F,) and [x]  is the greatest integer function. 

Proof. The fraction F,_I/F~ is the nth continued fraction 
approximate to e. From the theory of continued fractions (8~ we have the 
basic expression 

F,  1 ( - 1 ) ~ 5 ,  0 < c ~ < l  (2.1) 
=---~:-~ ~ -t F~F.+~ ' 
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From this it immediately follows that for n even 

[k~] >~ [kF"-F. J ' ] 

and that for n odd 

[kd ~[kF"-' l  
_ F .  3 

We now establish the inequalities in the reverse 
inequalities are true for 1 ~< k ~< F.). 

For  n even we have, using k < F. ,  

so that 

F.  i 6n 
k~ < k --~. " + F.+-----~I 

direction (the 

The term on the right-hand side of the above inequality will 
[k(F,, I/F.)] if we can show that 

F.  1] 6. 
k - - ~ j Y + F ~ +  < 1  

Let kF,, 1 = m ' F . + m , O < m < F , .  so that {k(F._I /F, , )}  = m / F . .  
Observe 

m 3. < m  1 F . - 1  1 = 1 -  -~. < 1  
F,, F F .+ ,  F,, ~ -~ .+1<~-~ .  + r.+m 

For n odd we have 

so that 

k Fn-1 On < k a  
F. F.+I 

Tracy 

above 

be 

[k F . _ l  6,, 1 
Fo F~+, ~[k~] 

The term on the left-hand side of the above inequality will be [k(F,, #F.,)] 
if we can show that { k(F,, _ t/F,,) } - 6,,/F,, + 1 > O. 
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Observe 

m 6n 

F. F.+I 

I . e m m a  2.3. The 
converges uniformly in 
l i ra ,_ oo (F, 1/Fn). 

ProoL 

> 
m 1 1 1 

/> - -  > 0  | 
F, Fn+ 1 F, F,+,  

sequence Xk, F =  {k(Fn_l/Fn)}, 1 <<.k<~F,- 1, 
k as n--*oo to x k = { k e } ,  where ~ =  

Using {x} = x -  [x] ,  we have 

Xk,Fn -- X k = k ~ F.  

=k\ g,  -- 

+ I-k -I 

where the second equality follows from Lemma 2.2. From (2.1) we easily 
s e e  

F"-----Z' 4 •  
F. 

so we may conclude that 

1 
xkl 

Fn 

The right-hand side of this last inequality is independent of k and goes to 
zero as n --, oe. | 

Using the above lemmas, we can now prove the following result: 

Propos i t ion  2.4. Let Xk,Fo= {k(Fn_l/Fn)},  1 <~k<~Fn, and l e t f b e  
a continuous function defined on [0, 1 ]; then 

l i r n  -~n k~=l f(Xk, Fn) : fo f ( x )  dx 

Our final lemma follows: 

Lemma 2.5. Let p and q be positive, relatively prime integers, 
p > q. Define 

822/51,/3-4-11 
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where Ix]  is the greatest integer function. Then the number of elements in 
the set 

S p , q • { l , l + l  ..... l+m}, l<~l<~p, O<~m<<.p-1 

is either E(m + 1) q/p] or [-(m + 1) q/p] + 1. 

Proof. Write p = s q + r ,  l<.r<.q-1, s ~ ,  and let a ~ = [ k ( p / q ) ] .  
Now 

so t h a t a k + l - a k = s o r s + l .  F o r m + l < s ,  

[ ( m +  1 )q ]  < [ s q ]  = [ 1 - p ]  = 0  

This shows that the lemma is true for m + 1 < s. Now let a.,  a.  + 1 ..... a.  + N 
be elements of Sp,q that lie in {/, .... l+m} such that a._~ and a.+g+~ are 
not in { l,..., l + m }. Then 

where we used Ix + y]  ~> Ix]  + I-y]. Thus, 

NP-<~m+ ~<m+l  

o r  

N~<(rn+ 1) q 
P 

Since N is an integer, N~< [(m + 1)q/p] .  Therefore, the number of elements 
inSp.qC~{l ..... l + m } , N + l ,  is less than or equal to [ ( m + l ) q / p ] + l .  
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Now N is maximal, which means a .  + N + 1 -  a .  > m. Since a.  + N + I -- a .  
is an integer, we must have a .  + N + 1 - -  a.  >~ m + 1. Thus, 

m+  I<~(N+ l ) s + [ ( N + n + l ) q ] - I n ~ ]  

= (N+l)s+(N+l)r-{(N+n+l)q}+{nq}q 

Hence 

o r  

( N +  l ) P > ~ m +  l + { ( N + n +  

N + l . ~ > ( m + l ) q - + q - ( { ( N + n + l ) q } - I n q }  P 

The second term on the right-hand side is strictly larger than -1 ,  

( U + l ) > ( m + l )  -q-p l > ~ [ ( m + l ) q ]  - p J  1 

Since N+  1 is an integer, 

N + I  ~>I(m + 1)q]  

This proves the lemma. II 

3. A M P L I T U D E  A(F,,; {E2}  ) IN T H E  F I B O N A C C I  L I M I T  

The critical temperature T c for a nth-order layered Ising model 
satisfies the condition (~'3) 

( 1 - Z l c )  2n 

l = l  

For the Fibonacci layering S., (3,1) reduces to 

( 1 - - Z l C ~  2Fn "z2Fn-1'72Fn 2 (3.2)  
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As n -o oo, the relation (3.2) becomes 

( 1-zl, .~2= 2~ 2cr 2 (3.3) 
1 + zlc/ zA~zB~ 

where a 1 = (1 + x/5)/2 is the golden mean. The amplitude A(F,; {E2} ) is 
given by ~3) 

A(F,; {E2}) =/~c2(4~rr,) -~ (zL ~ - z~) 

• 2LE ,+  Z B(L; (3.4) 
l~l 

with 

eo-i Fo f i  (l+zlc~2Z2c(l+j) (3.5) 
BZ(F,; {E2})= Z E 1 

m = O  = , = 0  

where Zl = tanh(E,/kT), z2(j) = tanh{E2(j)/kT}. We write zA = 
tanh(Ea/kT) and zB = tanh(EB/kT), and the z's have a subscript c when T is 
To. We can now prove the following: 

P r o p o s i t i o n  3.1. For  the Fibonacci layering S, we have 

B2(F,;{E2}) { 1 - x  2 )2  
nlirn ~_~- = \ ~ j  (3.6) 

where x = ZBc/ZAc. 

ProoL Using the Tc condition (3.2), we can write 

lWZlc)2m+2 f i  ZBc (1 - f -~ l c ,  ] Z2c(l'3t- J)  = x2(m+ I)Fn-I/Fn- 2NA , X = - -  
j=0 ZAc 

where NA = NA(I, m, n) is the number of A's in the Fibonacci layering Sn 
between positions l and l+m (including l and l+m), l<~l<<.Fn, 
0 ~< m ~< F n -- 1. For  odd n the positions of A's in the Fibonacci layering is 
generated by { [ k ( F f f F n _ l ) ] l k ~ }  and this is essentially the case for 
even n (the last two elements in any block are interchanged). In either case 
we may apply Lemma 2.5 to conclude that NA(/, m, n) is either [-NA] or 
[NA ] + 1, where we define NA = (m + 1) F,_ 1/F,. Thus, we must compute 
the sum 

1 Fn 1 F~ 

[ n = ' ~ n  m=0 ~' x2NA I~-- I X 2NA(I . . . .  ) 
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Because of the periodicity we have 

o r  

N A ( I , m , n ) = ( m +  l ) F , _ L  
l=l  

1 J~'a~ Na (l' m, n) = Na 
F n  = 

Using this last expression and the fact that NA(I, m, n) assumes only the 
values [-NA] and [JVA] + 1, we may calculate the number of times 
NA(I, m, n) assumes the value [?~A] as l ranges from 1 to Fn. A simple 
calculation shows that this number is F~(1 - {-NA }), where {x} is the frac- 
tional part of x. 

Thus, we have 

1 F ~ - I  
I ~ = - ~  ~, x 2 ~ ( F ~ ( 1 - { N A } ) x  2ENa1+Fn{Na}x-ZLIVA1 2) 

m = 0  

= _  _ + 

n m = 0  

Applying Proposition 2.4, we obtain 

, ( l - x 2 )  2 
In ~ ;J0 xa'(a - t + x 2t) dt = 

as ?1--+ o0. | 

Using Proposition 3.1 and (3.4), we easily establish Theorem 3.2. 

Theorem 3.2. For the Fibonnaci S. layered Ising model, the 
amplitude A(Fn; {E2 }) approaches 

/~ x 2 In x 2 
(z~ 1 - zlc ) ~ {2E~ + EA ~(ZA~ -- ZAc) 

+ Esc~2(z~c ' --Zsc)} 2 (3.7) 

as n --* oo, where x=z~c/zAc, ~- t  = (1 + ,,/-5)/2, and Zlc, ZAc, and Zsc satisfy 
the T c condition (3.3). 

Remarks 

1. Numerically the convergence of A(F,;  {E2}) to (3.7) is quite 
rapid. 
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2. Fo r  E A = E ~ = E 2 ,  (3.3) reduces to the Onsager  Tc condi t ion and 
(3.7) reduces to the Onsager  ampl i tude  for the divergence of the 
specific heat. 

3. The  ampl i tude  (3.7) natural ly  factors into two pieces. The piece 
coming f rom Propos i t ion  3.1 does not  depend upon  the golden 
mean  ~-1,  whereas the second piece clearly does. 
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